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 Defect detection in Additive Manufacturing (AM) is a critical aspect of 

ensuring product quality, particularly in industries such as renewable 

energy and biomedical engineering, where reliability and precision are 

paramount. This study conducted a systematic review of 152 peer-

reviewed articles, following the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to 

analyze the adoption of Artificial Intelligence (AI) techniques in defect 

detection within AM processes. The review revealed that machine 

learning (ML) and deep learning (DL) techniques, such as 

Convolutional Neural Networks (CNNs) and Support Vector Machines 

(SVMs), are widely employed for identifying common defects like 

porosity, delamination, and dimensional inaccuracies. Hybrid AI 

models, integrating ML and DL, demonstrated superior performance in 

detecting complex, multi-dimensional defects across various AM 

applications. Additionally, the integration of multimodal data, including 

thermal imaging, acoustic signals, and optical measurements, was 

found to improve defect detection rates by an average of 22%, 

enhancing the robustness and accuracy of AI models. The study also 

identified significant challenges, including dataset scarcity and 

annotation inconsistencies, which limit the generalizability and 

scalability of AI solutions. Comparative analyses further highlighted 

the distinct advantages of tailored AI approaches for specific 

applications, with renewable energy and biomedical engineering being 

key focus areas. This review underscores the transformative potential of 

AI in advancing defect detection in AM, providing a comprehensive 

understanding of its capabilities, challenges, and implications for high-

stakes manufacturing industries. 
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 INTRODUCTION 

Additive Manufacturing (AM), widely known as 3D 

printing, has transformed modern manufacturing by 

enabling the production of complex, customized 

components with a level of precision that traditional 

techniques often cannot achieve (Tan et al., 2017). This 

innovative technology allows for the efficient 

production of parts in industries ranging from aerospace 

to medical engineering (Sun et al., 2021). However, the 

process is not without its challenges, as defects such as 

porosity, delamination, and surface roughness 

frequently arise during production, compromising the 

structural integrity and performance of manufactured 

components (Yadollahi & Shamsaei, 2017). Addressing 

these defects is essential to maintaining the reliability 

and functionality of parts, especially in critical sectors 

like renewable energy and biomedical engineering. In 

recent years, Artificial Intelligence (AI) has emerged as 

a game-changer for defect detection, providing 

sophisticated solutions that leverage data-driven 

insights to ensure quality assurance in AM workflows 

(Sun et al., 2021; Yadollahi & Shamsaei, 2017; You et 

al., 2017).Figure 1 highlights the transformative role of 

AI in defect detection within AM processes. It provides 

a visual representation of how AI integrates with AM 

workflows, demonstrating the critical functions of data 

monitoring, algorithmic processing, and defect 

classification (Herzog et al., 2024). The study's findings, 

which emphasize the efficacy of ML and DL techniques, 

particularly CNNs, in analyzing real-time data for defect 

detection, are well-reflected in the figure. Additionally, 

the inclusion of process control in the workflow aligns 

with the study's emphasis on hybrid AI models and 

multimodal data integration for robust and accurate 

defect detection. This figure encapsulates the practical 

application of AI methodologies, supporting the study's 

broader narrative on advancing quality assurance in 

high-stakes AM industries.AI has demonstrated 

unparalleled capabilities in analyzing intricate data 

patterns and providing predictive analytics to detect and 

mitigate defects. Machine learning (ML), deep learning 

(DL), and computer vision are increasingly employed 

for real-time monitoring and defect identification in AM 

processes (Faisal, 2023; Turner et al., 2014). Unlike 

traditional quality assurance techniques such as X-ray 

imaging and ultrasonic testing, which are often labor-

intensive and struggle with highly complex geometries, 

AI-driven approaches provide speed, scalability, and 

accuracy (Bhavar et al., 2017; Saha, 2024). Recent 

studies highlight that AI can process extensive datasets 

generated during AM, enabling early detection of issues 

such as thermal distortions and layer misalignments 

(Bhavar et al., 2017; Tapia & Elwany, 2014). Moreover, 

AI facilitates adaptive control mechanisms that 

dynamically adjust manufacturing parameters, reducing 

material waste and production costs (Rahman, 2024b; 

Turner et al., 2014). In the renewable energy sector, the 

application of AM has advanced the fabrication of wind 

turbine blades, photovoltaic cells, and energy storage 

systems. However, these components are often prone to 

defects that adversely affect their performance and 

durability. For instance, microstructural defects in 

turbine blades can cause mechanical failure, while 

surface irregularities in photovoltaic cells can diminish 

energy conversion efficiency (Berumen et al., 2010; 

Bhavar et al., 2017; Rahman, 2024). AI-based 

techniques, particularly convolutional neural networks 

Figure 1: Artificial Intelligence for Defect Detection in Additive Manufacturing 

 

 

Source: Herzog et al. (2024) 
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(CNNs) and generative adversarial networks (GANs), 

have been used to identify and rectify these defects 

effectively (Hughes et al., 2020). Research by Turner et 

al. (2014) demonstrated that AI systems trained on 

multimodal datasets, including thermal and optical 

imagery, achieve superior performance in defect 

detection. These advancements not only enhance the 

reliability of renewable energy components but also 

contribute to the sector’s goal of long-term 

sustainability (Gao et al., 2015; Sireesha et al., 2018). 

Biomedical engineering represents another domain 

where AM’s customization capabilities are invaluable. 

The production of patient-specific prosthetics, implants, 

and surgical instruments relies heavily on AM's 

precision and adaptability (Yavari et al., 2014). 

However, defects such as dimensional inaccuracies and 

material inconsistencies pose significant challenges to 

ensuring the safety and functionality of these products 

(Herzog et al., 2024). AI-driven systems have proven 

instrumental in overcoming these challenges by 

integrating advanced defect detection algorithms into 

AM processes (Riemer & Richard, 2016). For example, 

studies by Herzog et al. (2024) showed that AI 

algorithms could assess porosity levels in titanium 

implants with 98% accuracy, ensuring their mechanical 

strength and biocompatibility. Furthermore, AI-

enhanced quality control systems reduce the time 

required for regulatory approvals, accelerating the 

delivery of critical biomedical devices to market (Yavari 

et al., 2014). The implementation of AI in AM processes 

is not limited to defect detection but extends to 

optimizing the entire manufacturing pipeline. 

Integrating AI with AM requires the development of 

robust algorithms capable of handling diverse material 

properties, manufacturing settings, and defect 

typologies (Riemer & Richard, 2016). Techniques such 

as data fusion and transfer learning have enabled AI 

systems to generalize across varying datasets, 

improving their adaptability in dynamic environments 

(Herzog et al., 2024; Yavari et al., 2014). For instance, 

data fusion techniques combining acoustic, thermal, and 

optical data streams allow AI models to detect micro-

defects with unprecedented precision (Riemer & 

Richard, 2016). Additionally, the scalability of these AI 

systems is supported by advancements in cloud 

computing, which provide the computational power 

necessary for real-time defect analysis (Au et al., 2014). 

Despite the complexities associated with AI integration, 

its impact on AM is undeniably transformative. The 

synergy between AI and AM has ushered in a new era 

of manufacturing characterized by unparalleled levels of 

accuracy and efficiency (Jinoop et al., 2019). In 

renewable energy, AI has enabled the creation of defect-

free, high-performance components, which are crucial 

for the reliability and sustainability of energy systems 

(Sireesha et al., 2018). Similarly, in biomedical 

engineering, AI has ensured the production of safe and 

effective medical devices tailored to individual patients 

(Bhavar et al., 2017). By harnessing AI's potential, 

industries can address longstanding challenges in defect 

detection, ensuring the highest quality standards in AM 

Figure 2: Health Monitoring of the manufacturing environment with PHM and QC 

 

 

Source: Sundaram and Zeid (2023). 
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processes (Dass & Moridi, 2019; Tapia & Elwany, 

2014). 

The primary objective of this study is to investigate the 

integration of Artificial Intelligence (AI) into defect 

detection processes in Additive Manufacturing (AM), 

with a particular emphasis on its applications in 

renewable energy and biomedical engineering. The 

study aims to identify and analyze state-of-the-art AI 

methodologies, including machine learning (ML), deep 

learning (DL), and computer vision, to enhance defect 

detection accuracy and efficiency during AM 

workflows. It further seeks to evaluate the effectiveness 

of AI-driven defect detection in addressing specific 

challenges associated with high-stakes applications, 

such as structural integrity in renewable energy 

components and biocompatibility in biomedical 

implants. By systematically reviewing existing studies 

and applications, this research intends to establish a 

comprehensive understanding of how AI contributes to 

quality assurance and product reliability in AM. 

Additionally, the study aims to uncover the limitations 

and opportunities in implementing AI solutions, 

providing a framework for their optimization in critical 

industries. This focused approach ensures that the 

research not only highlights the transformative potential 

of AI but also provides actionable insights for advancing 

defect detection in AM. 

 LITERATURE REVIEW 

The field of Additive Manufacturing (AM) has 

witnessed substantial advancements in recent years, 

with Artificial Intelligence (AI) emerging as a pivotal 

enabler for addressing critical challenges such as defect 

detection (Hughes et al., 2020). The integration of AI 

into AM processes has opened new avenues for quality 

control, predictive maintenance, and process 

optimization, particularly in industries like renewable 

energy and biomedical engineering. A growing body of 

research highlights the transformative role of AI 

methodologies, including machine learning, deep 

learning, and computer vision, in enhancing the 

precision and reliability of AM products. This literature 

review aims to synthesize existing knowledge on AI 

applications in defect detection within AM, 

emphasizing its contributions, limitations, and practical 

implications. The review is structured to provide a 

comprehensive understanding of the state-of-the-art 

techniques and their applications, offering insights into 

areas where further advancements are needed. 

 Overview of Additive Manufacturing (AM) 

Additive Manufacturing (AM), commonly referred to as 

3D printing, is a transformative manufacturing approach 

that builds objects layer by layer using digital designs, 

offering unparalleled flexibility in creating complex 

geometries (Everton et al., 2016; Talukder et al., 2024). 

Unlike traditional subtractive manufacturing, which 

involves cutting away material, AM is an additive 

process that minimizes waste and allows for intricate 

customization (Talukder et al., 2024; Turner et al., 

2014). AM technologies, including Fused Deposition 

Modeling (FDM), Stereolithography (SLA), and 

Selective Laser Sintering (SLS), cater to diverse 

material requirements such as metals, polymers, and 

ceramics (Sireesha et al., 2018). This versatility has 

positioned AM as a key driver of innovation in 

manufacturing, enabling the creation of prototypes, end-

use products, and highly specialized components 

(Bhavar et al., 2017). Furthermore, its capability to 

integrate design and production processes has 

revolutionized supply chain models, enabling on-

demand manufacturing and reducing logistical 

complexities (Everton et al., 2016; Tapia & Elwany, 

2014). The evolution of AM from rapid prototyping to 

full-scale production underscores its growing 

importance in industrial applications (Dass & Moridi, 

2019). 

The adoption of AM has been particularly significant in 

industries requiring precision, customization, and 

reliability, such as aerospace, healthcare, and renewable 

energy. In aerospace, AM is employed to fabricate 

lightweight, complex components that enhance fuel 

efficiency and reduce costs (Gao et al., 2015). For 

example, General Electric’s use of AM in 

manufacturing jet engine nozzles has demonstrated the 

technology’s potential for reducing part count and 

improving performance (Theodosiou et al., 2019). 

Similarly, in the healthcare sector, AM is pivotal in 

producing patient-specific implants, prosthetics, and 

surgical instruments tailored to individual anatomical 

requirements (Sun et al., 2021). Studies have 

highlighted the role of AM in creating biocompatible 

implants with enhanced precision, minimizing surgical 

risks (Calignano et al., 2015; Zhong et al., 2017). 

Additionally, AM’s contribution to renewable energy 

extends to the fabrication of wind turbine components 

https://allacademicsresearch.com/index.php/SDMI
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and photovoltaic cells, where its ability to produce 

defect-free, high-performance parts significantly 

impacts efficiency and sustainability (Sun et al., 2021; 

Yadollahi & Shamsaei, 2017). Despite its benefits, AM 

faces critical challenges, particularly in maintaining 

consistent quality and addressing defects during 

production. Defects such as porosity, delamination, and 

thermal distortion can compromise the structural 

integrity and functionality of AM components, 

especially in high-stakes applications (Cobb & Ho, 

2016; Yadollahi & Shamsaei, 2017). These challenges 

are compounded by the variability inherent in AM 

processes, including material behavior, printing 

parameters, and environmental conditions (Guo & Leu, 

2013; Zhong et al., 2017). Research indicates that real-

time monitoring and adaptive quality control 

mechanisms are essential to overcoming these issues, 

yet their implementation remains complex and resource-

intensive (Mireles et al., 2015). Furthermore, the lack of 

standardized testing and certification procedures for AM 

components in critical industries poses additional 

barriers to widespread adoption (Guo & Leu, 2013; 

Yadollahi & Shamsaei, 2017). Recent advancements in 

AM technologies and methodologies have sought to 

address these challenges, focusing on enhancing 

precision, scalability, and material diversity. 

Techniques such as Selective Laser Melting (SLM) and 

Electron Beam Melting (EBM) have improved the 

mechanical properties of AM parts, making them 

suitable for load-bearing applications (Calignano et al., 

2015; Mireles et al., 2015). Studies have also 

emphasized the importance of hybrid manufacturing 

approaches that combine AM with traditional machining 

to achieve superior surface finishes and dimensional 

accuracy (Riemer & Richard, 2016; Rosales et al., 

2019). Additionally, the integration of digital twins and 

AI-driven systems into AM workflows has enabled 

predictive maintenance and defect detection, ensuring 

consistent quality across production cycles (Mireles et 

al., 2015; Mukherjee et al., 2017). These advancements 

underline AM’s potential to meet the rigorous demands 

of high-stakes industries, reaffirming its status as a 

cornerstone of modern manufacturing. 

 The Role of Artificial Intelligence in 

Manufacturing 

Artificial Intelligence (AI) has become a cornerstone in 

modern manufacturing, offering advanced capabilities 

for process optimization, predictive analytics, and defect 

detection. Among the most prominent AI techniques 

utilized in industrial applications are machine learning 

(ML), deep learning (DL), computer vision, and natural 

language processing (NLP) (Sundaram & Zeid, 2023a). 

ML algorithms, such as decision trees and support 

vector machines, are widely applied for predictive 

maintenance, allowing manufacturers to anticipate 

equipment failures and reduce downtime (Sundaram & 

Zeid, 2023). DL, a subset of ML, excels in recognizing 

complex patterns within large datasets, making it 

indispensable for tasks such as image-based quality 

control and process monitoring (Fink et al., 2020). 

Computer vision, powered by convolutional neural 

networks (CNNs), enables automated defect detection 

through high-resolution imaging of manufactured 

components (Ha & Jeong, 2021). In addition, AI-

powered robotic systems enhance precision and 

Figure 3: Additive Manufacturing: Adoption, Benefits, Challenges, and Advancements 
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efficiency in assembly lines, as they can adapt to 

dynamic production environments through real-time 

data analysis (Nguyen et al., 2020). These techniques 

collectively demonstrate AI's capacity to revolutionize 

manufacturing processes across diverse industrial 

sectors. 

The application of AI in manufacturing has evolved over 

decades, transitioning from basic automation to highly 

sophisticated systems capable of decision-making and 

self-optimization. Early implementations of AI focused 

on rule-based expert systems, which were primarily 

used for diagnostics and decision support in 

maintenance (Fink et al., 2020). With the advent of 

machine learning in the 1990s, manufacturing systems 

began leveraging statistical models to analyze 

operational data and optimize production processes 

(Nguyen et al., 2020). The introduction of deep learning 

in the 2010s marked a paradigm shift, enabling AI to 

process unstructured data such as images, videos, and 

text with remarkable accuracy (Howley & Madden, 

2005). Over time, AI systems have become integral to 

Industry 4.0, where they facilitate seamless integration 

between digital technologies and physical 

manufacturing processes (Sundaram & Zeid, 2023). 

Today, AI is widely adopted for tasks such as supply 

chain optimization, real-time quality control, and energy 

efficiency management (Fink et al., 2020). One of the 

most significant contributions of AI in manufacturing is 

its application in quality control processes. AI-based 

defect detection systems utilize techniques such as 

computer vision and sensor fusion to identify anomalies 

during production in real time (Abubakar et al., 2023). 

For example, neural networks have been trained on 

thermal and optical data to detect micro-defects in 

components with a high degree of precision (Howley & 

Madden, 2005). Furthermore, predictive analytics 

models enable manufacturers to proactively address 

potential quality issues by analyzing historical 

production data (Yang et al., 2020). Studies have shown 

that AI can reduce inspection times by up to 40% 

compared to traditional methods, while also improving 

defect detection rates (Lilhore et al., 2022; Herzog et al., 

2024). The use of generative adversarial networks 

(GANs) for synthetic data generation has further 

enhanced AI’s capabilities in training robust models, 

especially in scenarios where labeled data is scarce 

(Ullah et al., 2020). In addition, AI is also instrumental 

in optimizing operational efficiency within 

manufacturing systems, streamlining workflows and 

minimizing resource utilization. Reinforcement learning 

algorithms have been implemented to optimize process 

parameters dynamically, achieving greater output 

consistency and material efficiency (Yun et al., 2020). 

Robotic process automation (RPA), guided by AI, 

facilitates the automation of repetitive tasks such as 

inventory tracking and assembly line operations, freeing 

human workers to focus on high-value activities (Kumar 

et al., 2018). In the context of smart factories, AI-driven 

systems monitor energy consumption patterns and 

recommend strategies for reducing waste, contributing 

to sustainability goals (Sundaram & Zeid, 2023). 

Studies by Lilhore et al. (2022) and Park et al. (2022) 

illustrate how AI-enabled production planning systems 

improve decision-making accuracy, thereby enhancing 

throughput and reducing operational costs. These 

advancements highlight AI's transformative impact on 

the efficiency and productivity of manufacturing 

systems. 

 AI Techniques for Defect Detection in Additive 

Manufacturing 

Machine learning (ML) has emerged as a transformative 

technology for defect detection in Additive 

Manufacturing (AM), enabling predictive and 

automated quality assurance. ML algorithms such as 

Figure 4: AI's Evolution in Manufacturing 
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decision trees, random forests, and support vector 

machines (SVMs) are widely applied for detecting 

defects like porosity, thermal distortions, and layer 

misalignments (Benbarrad et al., 2021). These 

algorithms excel in handling structured data generated 

during the AM process, such as sensor readings and 

thermal profiles, to identify deviations indicative of 

potential defects (Ekambaram & Ponnusamy, 2022). 

For instance, random forests have been employed to 

predict porosity levels in metal additive manufacturing 

based on process parameters like laser speed and power 

(Bharti et al., 2022). Similarly, SVMs have shown high 

accuracy in classifying surface defects in polymer-based 

AM components (Amosov et al., 2022). Reinforcement 

learning, a subset of ML, is increasingly being used to 

optimize process parameters dynamically during AM to 

prevent defect formation (Lilhore et al., 2022). These 

applications underscore the versatility and efficacy of 

ML algorithms in enhancing defect detection 

capabilities in AM. 

The integration of multimodal data in defect detection 

leverages AI’s ability to combine diverse data sources, 

such as thermal images, acoustic signals, and optical 

data, to enhance defect identification in AM. Sensor 

fusion techniques, powered by ML and DL algorithms, 

are increasingly used to improve the accuracy and 

reliability of defect detection systems (Ekambaram & 

Ponnusamy, 2022). For example, Bharti et al., (2022) 

demonstrated that combining thermal and optical data 

streams using DL models significantly improved the 

detection of subsurface defects in metal AM parts. 

Similarly, studies by Amosov et al. (2022) showed that 

integrating acoustic emission data with thermal profiles 

enabled early detection of delamination in polymer AM 

processes. Hybrid approaches using multimodal data not 

only enhance the robustness of defect detection systems 

but also provide comprehensive insights into defect 

causation, aiding in process optimization (Lilhore et al., 

2022). Comparative studies have demonstrated that ML 

and DL techniques each have distinct strengths in defect 

detection, depending on the complexity of the AM 

process and the type of data analyzed. While ML 

algorithms like decision trees and SVMs are 

computationally efficient and effective for structured 

datasets, DL models such as CNNs and GANs excel in 

unstructured data environments, such as image and 

signal analysis (Ullah et al., 2020). Studies by Gobert et 

al. (2018) found that DL models outperformed 

traditional ML methods in identifying intricate surface 

defects in metal AM components. However, ML 

techniques remain valuable in applications requiring 

explainable models and low computational resources 

(Herzog et al., 2024). Hybrid approaches, which 

Figure 5: AI-Driven Multimodal Data Integration Framework 

for Defect Detection in Additive Manufacturing 
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combine ML’s efficiency with DL’s analytical depth, 

are increasingly being explored to achieve balanced 

performance across varied AM defect detection tasks 

(Herzog et al., 2024; Sacco et al., 2020). These findings 

underscore the importance of selecting appropriate AI 

techniques based on specific AM requirements and data 

characteristics. 

 AI for Defect Detection in Renewable Energy 

Applications 

Wind turbine components, particularly blades, 

gearboxes, and bearings, are highly susceptible to 

defects such as surface cracks, delamination, and fatigue 

damage, which can significantly affect their 

performance and lifespan (Yang et al., 2020). Artificial 

Intelligence (AI), particularly machine learning (ML) 

and computer vision techniques, has proven effective in 

identifying these defects. Convolutional Neural 

Networks (CNNs) have been widely used to detect 

micro-cracks on turbine blades from high-resolution 

images, achieving detection accuracies exceeding 95% 

(Dass & Moridi, 2019; Ma & Lee, 2022). Moreover, 

acoustic emission data combined with AI algorithms has 

enabled real-time monitoring of structural health, 

providing early warnings of potential failures (Gamage 

& Xie, 2008; Sassi et al., 2019). Reinforcement learning 

has also been employed to optimize maintenance 

schedules based on defect prediction models, 

minimizing downtime and operational costs (Herzog et 

al., 2024). These AI-driven approaches demonstrate the 

potential for proactive defect detection, enhancing the 

reliability and operational efficiency of wind energy 

systems. Moreover, Photovoltaic (PV) systems are 

highly sensitive to defects such as microcracks, 

delamination, and hot spots, which can drastically 

reduce energy conversion efficiency and system 

longevity (Dass & Moridi, 2019). AI-based techniques, 

particularly thermal imaging combined with deep 

learning models, have become indispensable for 

detecting and classifying these defects. Studies by 

Sames et al.(2016) found that AI-powered defect 

detection systems utilizing infrared imaging and neural 

networks achieved higher accuracy in identifying hot 

spots compared to traditional inspection methods. 

Generative adversarial networks (GANs) have also been 

used to generate synthetic training data, addressing the 

scarcity of labeled datasets for defect detection in PV 

modules (Aminzadeh & Kurfess, 2015). Furthermore, 

ML algorithms such as support vector machines (SVMs) 

have been employed to analyze electrical performance 

data, enabling early identification of performance 

degradation caused by latent defects (Yang et al., 2020). 

These innovations have significantly improved the 

precision and efficiency of quality assurance processes 

in PV systems. 

The figure 6 illustrates a comprehensive modeling 

scheme designed to integrate Artificial Intelligence (AI) 

techniques for optimizing defect detection and quality 

assurance in renewable energy applications, particularly 

in photovoltaic (PV) systems and energy storage 

devices. The workflow begins with data input from 

diverse sources such as thermal imaging, electrical 

performance data, and environmental parameters. This 

input is processed using AI-based optimization 

techniques, which incorporate machine learning (ML) 

and deep learning (DL) paradigms to identify and 

address potential defects, such as microcracks, 

delamination, and hot spots in PV modules (Abubakar 

et al., 2023). The process integrates defect modeling, 

performance comparison, and iterative corrections, 

ensuring that only the most effective model is selected 

to predict and mitigate defects. The inclusion of AI 

paradigms and hybrid approaches reinforces the 

findings of this study, which emphasize the 

transformative role of AI in improving defect detection 

rates and overall system efficiency. Furthermore, the 

figure highlights the integration of functional analysis 

and sensitivity studies, which aligns with the study's 

findings that multimodal data fusion significantly 

enhances the reliability and robustness of AI models in 

AM processes. This modeling scheme showcases how 

AI-driven optimization can streamline defect detection, 

making it a critical tool for ensuring the reliability and 

sustainability of renewable energy systems (Abubakar 

et al., 2023). 

Energy storage devices, including lithium-ion batteries 

and supercapacitors, are critical for stabilizing 

renewable energy systems but are prone to defects such 

as internal short circuits, thermal runaway, and electrode 

degradation (Braam & Subramanian, 2014). AI 

techniques have been extensively applied to monitor and 

detect these defects in real-time. For instance, recurrent 

neural networks (RNNs) and long short-term memory 

(LSTM) models have been utilized to analyze time-

series data from battery management systems, 

accurately predicting anomalies indicative of internal 

defects (Dass & Moridi, 2019). Thermal imaging 

combined with CNNs has been effective in identifying 

https://allacademicsresearch.com/index.php/SDMI
https://allacademicsresearch.com/index.php/SDMI
https://allacademicsresearch.com/index.php/SDMI
https://doi.org/10.71292/sdmi.v2i01.8


 

STRATEGIC DATA MANAGEMENT AND INNOVATION 

Vol. 02, No. 01, January, 2025, Page: 01-20 

 

SDMI Page 9 

hotspots in battery modules, preventing potential safety 

hazards (Scotti et al., 2016). Moreover, predictive 

analytics driven by ML has been used to forecast the 

remaining useful life (RUL) of batteries, enabling 

preemptive maintenance and extending their operational 

lifespan (Hughes et al., 2020). These applications 

underscore the critical role of AI in enhancing the safety 

and reliability of energy storage technologies. 

Comparative analyses of AI techniques across 

renewable energy applications highlight their distinct 

strengths and limitations in defect detection. While 

computer vision excels in surface defect detection for 

wind turbine blades and PV systems, time-series 

analysis models such as RNNs are better suited for 

monitoring dynamic processes like battery performance 

(Scotti et al., 2016; Wang et al., 2011). Studies by Jiang 

et al. (2015) and Herzog et al. (2024) emphasize that 

hybrid approaches integrating multiple AI techniques 

often yield superior results. For example, combining 

image-based CNNs with acoustic signal analysis 

enhances defect detection accuracy in wind turbines. 

Similarly, integrating GANs for data augmentation with 

SVMs for performance prediction improves defect 

classification in PV systems. Despite variations in 

application-specific requirements, the overarching 

benefit of AI lies in its ability to provide scalable, 

accurate, and real-time defect detection solutions, 

ensuring the reliability of renewable energy 

infrastructure (Jinoop et al., 2019; Wei et al., 2019). 

 AI for Defect Detection in Biomedical 

Engineering 

Biomedical implants require high material consistency 

to ensure biocompatibility and structural integrity. 

Material inconsistencies such as porosity, microcracks, 

or uneven distributions of alloying elements can lead to 

implant failure or adverse biological reactions (Bartlett 

et al., 2018; Ekambaram & Ponnusamy, 2022). AI 

techniques, particularly machine learning (ML) and 

deep learning (DL), have proven instrumental in 

detecting these inconsistencies. For instance, 

convolutional neural networks (CNNs) have been 

employed to analyze X-ray and CT scan data for 

identifying microstructural defects in titanium and 

cobalt-chromium implants with high precision (Yang et 

al., 2020). Similarly, generative adversarial networks 

Figure 6:  Proposed modeling scheme proposed by Abubakar et al. (2023) 
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(GANs) have been used to simulate defect-free material 

structures, aiding in training models for more accurate 

defect identification (Liu et al., 2014). Studies by Bharti 

et al. (2022) and Herzog et al. (2024) further highlight 

that support vector machines (SVMs) trained on thermal 

imaging data can detect anomalies in the sintering 

process of ceramic-based implants. These AI-driven 

approaches significantly enhance the reliability and 

safety of biomedical implants, ensuring their suitability 

for clinical applications. The production of prosthetics 

demands precise dimensional accuracy to ensure 

optimal fit, comfort, and functionality for patients. 

Deviations in dimensions can compromise the 

prosthetic’s performance, leading to discomfort or 

reduced mobility (Ekambaram & Ponnusamy, 2022). 

AI-powered defect detection techniques, particularly 

computer vision systems, have been applied to monitor 

and control dimensional accuracy during additive 

manufacturing (AM) processes. CNNs integrated with 

high-resolution imaging systems have been successful 

in identifying dimensional discrepancies in prosthetic 

components, reducing post-manufacturing corrections 

(Mukherjee et al., 2017). Additionally, reinforcement 

learning algorithms have been used to dynamically 

adjust printing parameters in real time, ensuring 

dimensional conformity throughout the AM process (He 

& Qifan, 2020). Studies by Herzog et al. (2024) also 

demonstrate the efficacy of AI in evaluating geometric 

accuracy through three-dimensional scanning, 

providing rapid feedback to prevent defects. These 

advancements streamline the production of prosthetics, 

ensuring they meet stringent dimensional specifications. 

Real-time monitoring is crucial in biomedical AM 

applications to detect defects during the manufacturing 

process and prevent costly rework or failure. AI 

techniques such as recurrent neural networks (RNNs) 

and long short-term memory (LSTM) models have been 

employed for continuous monitoring of process 

parameters, including temperature, pressure, and 

material flow (Chang et al., 2019). Thermal imaging 

integrated with AI algorithms has been particularly 

effective in detecting overheating or under-cooling 

issues that can cause material inconsistencies in 

implants or prosthetics (Sames et al., 2016). Moreover, 

studies by Benbarrad et al. (2021) have demonstrated 

the application of acoustic emission analysis combined 

with ML for real-time defect detection in polymer-based 

biomedical components. By enabling instant 

identification and rectification of defects, AI-powered 

real-time monitoring enhances the efficiency and 

reliability of biomedical AM workflows (Ekambaram & 

Ponnusamy, 2022). Comparative studies on AI 

applications in biomedical defect detection reveal 

significant variations in performance based on the type 

of data and manufacturing processes involved. For 

instance, CNNs are highly effective for analyzing 

imaging data, making them suitable for detecting 

material inconsistencies and dimensional defects 

(Sames et al., 2016). In contrast, RNNs and LSTMs 

excel in time-series analysis, which is essential for real-

 

Figure 7:  AI-Driven Defect Detection in Biomedical Engineering 
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time monitoring applications (Gong et al., 2015). 

Studies by Ekambaram and Ponnusamy (2022) indicate 

that hybrid approaches integrating multiple AI 

techniques, such as combining GANs for data 

augmentation with SVMs for defect classification, yield 

superior results. Additionally, the use of multimodal 

data, such as integrating thermal and acoustic signals, 

enhances the robustness and accuracy of defect 

detection models (Benbarrad et al., 2021; Herzog et al., 

2024). These findings underscore the importance of 

selecting and combining appropriate AI methods 

tailored to specific biomedical engineering challenges. 

 Multimodal Data Integration in AI for Defect 

Detection 

Thermal imaging has become an essential tool for defect 

identification in manufacturing, leveraging the ability to 

capture thermal patterns and detect anomalies indicative 

of defects such as cracks, voids, or delamination 

(Herzog et al., 2024). AI techniques, particularly deep 

learning models like convolutional neural networks 

(CNNs), enhance the efficacy of thermal imaging by 

automating the analysis of large datasets and identifying 

subtle thermal irregularities (Kanko et al., 2016). For 

instance, studies by Liu et al. (2014) demonstrated that 

CNNs trained on thermal images could detect porosity 

and microcracks in metal components with over 90% 

accuracy. Generative adversarial networks (GANs) 

have also been employed to augment thermal imaging 

datasets, addressing challenges related to limited labeled 

data for specialized applications (Bharti et al., 2022). 

Additionally, thermal imaging combined with AI has 

been successfully applied in additive manufacturing 

(AM) to monitor layer-by-layer deposition processes, 

ensuring defect-free production (Mukherjee et al., 

2017). These advancements underscore the critical role 

of thermal imaging as part of a multimodal approach to 

defect detection. 

Acoustic emission analysis is a non-destructive testing 

method that captures sound waves emitted during 

material deformation or crack formation, providing real-

time insights into structural integrity (Amosov et al., 

2022). AI integration has significantly enhanced the 

precision and applicability of acoustic emission analysis 

for defect detection. Machine learning (ML) algorithms, 

such as support vector machines (SVMs) and random 

forests, have been widely used to classify acoustic signal 

patterns, enabling the detection of defects like 

delamination and fatigue cracks in composite materials 

(So et al., 2016). Recurrent neural networks (RNNs) and 

long short-term memory (LSTM) models are 

particularly effective in analyzing time-series acoustic 

data, identifying defect propagation trends during 

dynamic processes (Mukherjee et al., 2017). For 

example, studies by Amosov et al. (2022) showed that 

AI-based acoustic analysis could predict material 

failures in wind turbine components with high 

reliability. The integration of AI and acoustic emission 

analysis has thus expanded the scope of this method 

across various industrial applications. In addition, the 

integration of multimodal data sources, such as thermal 

imaging, acoustic signals, and optical measurements, 

enhances the robustness and accuracy of defect 

detection systems. Multimodal data fusion leverages AI 

techniques to combine disparate datasets, providing a 

comprehensive view of manufacturing processes 

(Lilhore et al., 2022). For instance, So et al. (2016) 

demonstrated that fusing thermal and acoustic data 

using deep learning models improved the detection 

accuracy of subsurface defects in metal components. 

Similarly, studies by Amosov et al., (2022) highlighted 

that integrating thermal imaging with high-resolution 

optical data enabled precise identification of surface and 

internal defects in photovoltaic systems. These 

multimodal approaches mitigate the limitations of single 

data modalities, offering holistic solutions for complex 

defect detection challenges. The ability to process and 

analyze multimodal data simultaneously has positioned 

AI-driven systems as indispensable tools in quality 

assurance. 

 Comparative Analysis of AI Techniques in AM 

Defect Detection 

Evaluating the effectiveness of Artificial Intelligence 

(AI) techniques in defect detection for Additive 

Manufacturing (AM) requires robust performance 

metrics to measure accuracy, efficiency, and reliability. 

Commonly used metrics include precision, recall, F1-

score, and area under the receiver operating 

characteristic (ROC) curve (Lilhore et al., 2022). 

Precision assesses the proportion of true positive defect 

detections among all detected defects, while recall 

measures the ability to identify actual defects accurately. 

Studies by Park et al. (2022) emphasize the importance 

of the F1-score, which balances precision and recall, 

particularly in datasets with imbalanced defect classes. 

Computational efficiency is another critical metric, with 

processing time and resource utilization becoming 

decisive factors for real-time defect detection systems 

(Ullah et al., 2020). For instance, convolutional neural 
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networks (CNNs) demonstrate high accuracy in image-

based defect detection but are computationally intensive 

compared to support vector machines (SVMs), which 

are faster but less precise in complex data environments 

(Cruz et al., 2020). These metrics enable a systematic 

comparison of AI techniques, guiding the selection of 

appropriate models for specific AM applications. 

AI-driven defect detection has been extensively 

benchmarked in renewable energy applications, where 

reliability and efficiency are critical. For example, 

CNNs have demonstrated superior performance in 

identifying surface cracks in wind turbine blades using 

high-resolution optical and thermal imaging data, 

achieving over 95% detection accuracy (Lilhore et al., 

2022). Similarly, studies by Park et al., (2022) have 

shown that generative adversarial networks (GANs) 

significantly enhance model performance by 

augmenting training datasets for photovoltaic systems, 

enabling better detection of microcracks and 

delamination. Benchmarking efforts have also 

compared ML and DL approaches, revealing that DL 

models generally outperform traditional ML techniques 

in detecting complex defect patterns in renewable 

energy components (Ullah et al., 2020). These studies 

underscore the importance of AI techniques in ensuring 

the structural integrity and operational efficiency of 

renewable energy systems, making them indispensable 

for quality assurance in this domain. 

In biomedical engineering, benchmarking studies have 

focused on evaluating AI techniques for detecting 

defects in implants, prosthetics, and medical devices. 

CNNs and recurrent neural networks (RNNs) have 

emerged as preferred models for analyzing imaging and 

time-series data, respectively (Cruz et al., 2020). Studies 

by Zawadzki et al.(2018) highlight the effectiveness of 

CNNs in detecting microstructural inconsistencies in 

titanium implants, achieving detection accuracies 

exceeding 90% with minimal false positives. 

Additionally, RNNs have been applied to monitor real-

time manufacturing processes in biomedical additive 

manufacturing (AM), identifying anomalies in material 

deposition and thermal profiles with high reliability 

(Chaudhuri & Lovley, 2003). Comparative analyses 

have also revealed that hybrid approaches combining 

ML and DL techniques often outperform standalone 

models, providing a more comprehensive defect 

detection framework (Bobbio et al., 2018). These 

benchmarks provide critical insights into optimizing AI 

applications for defect detection in high-stakes 

biomedical engineering contexts. 

Category Key AI Techniques Applications Strengths 

Performance Metrics Precision, Recall, F1-

Score, ROC Curve 
 

Used for evaluating AI 

models across datasets 

Provides balanced evaluation of 

accuracy, efficiency, and 

reliability 

Renewable Energy CNNs, GANs, DL 

Models 

Wind turbine blades, 

Photovoltaic systems 

High accuracy (>95%) in surface 

defect detection, improved 

dataset augmentation 
 

Biomedical 

Engineering 

CNNs, RNNs, Hybrid 

Models 

Implants, Prosthetics, 

Medical Devices 

Detects microstructural 

inconsistencies, real-time 

anomaly detection 
 

Multimodal 

Integration 

Optical, Thermal, 

Acoustic Data 

Both renewable energy and 

biomedical engineering 
 

Enhances robustness and 

accuracy 

General Insights Hybrid Approaches 

(ML + DL) 

Adaptable across various 

industries 

Balances computational 

efficiency with analytical depth 

 METHOD 

This study adhered to the Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses (PRISMA) 

guidelines to conduct a systematic, transparent, and 

rigorous review of AI techniques for defect detection in 

Additive Manufacturing (AM). The PRISMA 

framework ensured that all steps of the review process 

were clearly documented and reproducible. The 

Table 1: Overview of the comparative analysis 
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following subsections outline each phase of the 

methodology. 

 Identification of Articles 

The identification phase involved a comprehensive 

search of academic databases, including Scopus, Web of 

Science, IEEE Xplore, and PubMed, to retrieve relevant 

articles. The search strategy combined keywords such as 

“Artificial Intelligence,” “Additive Manufacturing,” 

“Defect Detection,” “Machine Learning,” “Deep 

Learning,” and “Biomedical Engineering.” Boolean 

operators (e.g., AND, OR) were used to refine the 

searches, and filters were applied to include only peer-

reviewed articles published between 2010 and 2023. A 

total of 1,248 articles were initially retrieved from the 

databases. Duplicates were identified and removed 

using citation management software, resulting in 982 

unique articles for further screening. 

 Screening of Articles 

The screening process was carried out to exclude 

irrelevant articles based on predefined inclusion and 

exclusion criteria. The inclusion criteria focused on 

studies that (a) applied AI techniques for defect 

detection in AM, (b) addressed either renewable energy 

or biomedical engineering applications, and (c) 

provided empirical results or benchmarking data. 

Exclusion criteria eliminated articles that were (a) non-

English publications, (b) opinion pieces or reviews 

without data, and (c) unrelated to AI or AM processes. 

After screening titles and abstracts, 468 articles met the 

initial criteria for further evaluation. 

 Eligibility Assessment 

In the eligibility phase, the full texts of the remaining 

468 articles were assessed to confirm their relevance and 

adherence to the inclusion criteria. A detailed quality 

appraisal was conducted using the Critical Appraisal 

Skills Programme (CASP) checklist, ensuring that only 

studies with robust methodologies and valid results were 

included. This phase eliminated articles that lacked 

sufficient methodological detail, reducing the pool to 

152 articles. The eligibility assessment also included 

verification of the reported AI models, datasets, and 

performance metrics, ensuring consistency with the 

study’s objectives. 

 Final Inclusion 

A standardized data extraction form was used to collect 

relevant information from the 152 eligible articles. Key 

variables extracted included the AI technique used (e.g., 

CNNs, RNNs, SVMs), type of defect targeted (e.g., 

porosity, delamination), application domain (e.g., 

renewable energy, biomedical engineering), datasets 

employed, and reported performance metrics (e.g., 

accuracy, precision, recall). The extracted data were 

tabulated for systematic synthesis. Descriptive statistics 

were used to identify trends in the adoption of AI 

techniques, while a narrative synthesis highlighted 

comparative insights across studies. 

 FINDINGS 

The systematic review revealed a significant and 

increasing adoption of Artificial Intelligence (AI) 

techniques in defect detection within Additive 

Manufacturing (AM) processes. Among the 152 

reviewed articles, 83 (54.6%) prominently highlighted 

machine learning (ML) methods as the leading approach 

to addressing common AM defects such as porosity, 

delamination, and surface irregularities. These ML 

techniques demonstrated their ability to analyze 

structured datasets effectively, enabling early detection 

of anomalies during the manufacturing process. Within 

this category, Convolutional Neural Networks (CNNs) 

emerged as the most frequently implemented deep 

learning (DL) technique, discussed in 62 studies. These 

CNN-based models were predominantly used to analyze 

thermal images and high-resolution surface scans, 

demonstrating exceptional performance in identifying 

intricate defect patterns. Collectively, the 62 articles 

focusing on CNNs amassed over 12,500 citations, 

reflecting the academic and industrial interest in 

leveraging deep learning for defect detection in AM. 

Additionally, hybrid AI models combining ML and DL 

approaches were discussed in 29 articles, highlighting 

their ability to address complex and multi-dimensional 

defects more effectively than standalone models. These 

hybrid methods reinforced the notion that integrating 

diverse AI techniques is essential for handling the 

complexities inherent in AM defect detection. 

From the reviewed articles, it was evident that AI 

techniques have found notable applications in renewable 

energy and biomedical engineering, two high-stakes 

domains that demand precision and reliability. Of the 

152 studies, 47 focused on renewable energy 

applications, while 38 emphasized biomedical 

engineering. In renewable energy, AI was instrumental 

in improving defect detection for critical components 

such as wind turbine blades and photovoltaic systems. 
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These articles, which collectively garnered over 9,400 

citations, showcased the application of advanced 

techniques like Generative Adversarial Networks 

(GANs) and Support Vector Machines (SVMs) to 

identify surface and internal defects that could 

compromise energy efficiency and system reliability. 

For instance, GANs facilitated the generation of 

synthetic datasets to train models for identifying 

microcracks and delamination in photovoltaic systems, 

while SVMs were employed to classify surface defects 

in wind turbine components. In biomedical engineering, 

the reviewed studies underscored AI's critical role in 

ensuring material consistency and dimensional accuracy 

in implants and prosthetics. These 38 articles 

collectively received over 7,800 citations, underscoring 

the importance of AI in advancing manufacturing 

precision in biomedical applications where patient 

safety and product functionality are paramount. 

A notable trend across 58 articles was the integration of 

multimodal data, such as thermal imaging, acoustic 

emission signals, and optical data, to improve defect 

detection accuracy. These studies demonstrated that 

multimodal approaches enhanced the robustness and 

reliability of AI models by leveraging diverse data 

streams to provide a comprehensive view of the 

manufacturing process. The combined citation count for 

these 58 studies exceeded 10,200, reflecting the 

widespread recognition of multimodal integration's 

benefits. The reviewed articles consistently reported that 

multimodal data fusion led to an average improvement 

of 22% in defect detection rates compared to single-

modality approaches. This integration was particularly 

effective in identifying subsurface defects and ensuring 

process consistency in both metal and polymer-based 

AM workflows. Multimodal techniques allowed AI 

models to detect defects that might otherwise remain 

undetected by single-source data methods, making them 

an indispensable tool for quality assurance in AM. 

However, dataset scarcity and annotation challenges 

were identified as significant barriers to advancing AI-

driven defect detection in AM. A total of 46 articles 

addressed these issues, collectively amassing over 6,300 

citations. The findings highlighted that 29 articles 

pointed to the lack of standardized datasets across 

various AM technologies and materials, which hindered 

the generalizability of AI models. Without access to 

diverse and high-quality datasets, AI techniques often 

struggled to adapt to different manufacturing scenarios. 

Furthermore, the manual annotation of high-resolution 

images and complex 3D scans was reported as labor-

intensive and prone to inconsistencies. This challenge 

was discussed in 22 studies, which noted that subjective 

interpretation during manual labeling frequently led to 

degraded model performance. Despite these obstacles, 

14 articles emphasized the successful application of data 

augmentation techniques, such as GANs, to generate 

 

Figure 8: Comparative Analysis with Multi-Colored Bars and Multiple Metrics 
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synthetic datasets. These augmented datasets not only 

alleviated scarcity issues but also provided AI models 

with diverse training data to enhance their robustness. 

The comparative analysis of AI techniques revealed 

distinct advantages and limitations, varying by 

application requirements and data characteristics. Of the 

152 reviewed articles, 73 studies explicitly compared 

the performance of ML and DL techniques. These 

studies, collectively cited over 14,600 times, provided 

valuable insights into the strengths of different AI 

approaches. DL techniques, particularly CNNs, were 

found to be superior for image-based defect detection 

tasks, achieving an average accuracy of 93% across 34 

studies. Their ability to process high-resolution imaging 

data made them ideal for identifying intricate surface 

defects in AM products. On the other hand, ML 

techniques such as SVMs and Random Forests were 

noted for their computational efficiency and ease of 

implementation, particularly in scenarios involving 

structured datasets. However, these methods were less 

effective in handling unstructured data like thermal or 

acoustic signals. Hybrid approaches that combined ML 

and DL were discussed in 21 articles, showing an 

average improvement of 18% in defect detection 

accuracy compared to standalone models. These 

findings emphasized the importance of tailoring AI 

techniques to specific defect detection scenarios in AM 

to achieve optimal performance. 

 DISCUSSION 

The findings of this study highlight the extensive 

adoption of AI techniques, such as machine learning 

(ML) and deep learning (DL), in defect detection within 

Additive Manufacturing (AM). This aligns with earlier 

studies emphasizing the transformative role of AI in 

addressing manufacturing challenges (Herzog et al., 

2024). Specifically, the predominance of CNNs for 

analyzing thermal and imaging data, identified in 62 

articles, corroborates the conclusions of Au et al. (2014), 

who underscored CNNs’ ability to detect intricate 

patterns in unstructured datasets. However, this review 

also revealed that hybrid AI models, combining ML and 

DL, offer superior performance in handling complex 

defects. This observation extends the work of Gonzalez-

Solino and Di Lorenzo (2018), who proposed that 

integrating multiple AI techniques can enhance defect 

detection rates by leveraging the strengths of each 

method. These findings suggest a shift from standalone 

models toward hybrid solutions, addressing limitations 

highlighted in prior research. 

AI’s success in defect detection for renewable energy 

and biomedical engineering components further 

validates earlier research. For renewable energy, 47 

studies highlighted the use of AI techniques like GANs 

and SVMs for detecting defects in wind turbine blades 

and photovoltaic systems, which aligns with prior 

benchmarks set by Riemer and Richard (2016) and Jiang 

et al. (2015). These studies confirmed the efficacy of 

GANs in generating synthetic datasets to train defect 

detection models, which has also been emphasized in 

works by Chaudhuri and Lovley (2003). Similarly, AI's 

critical role in biomedical engineering applications, 

highlighted in 38 studies, builds on the findings of 

Rogers et al. (2020), who noted the importance of 

ensuring material consistency in implants and 

dimensional accuracy in prosthetics. While earlier 

research predominantly focused on theoretical 

capabilities, the findings of this review provide 

empirical evidence of AI’s practical applications in 

improving manufacturing precision in these high-stakes 

industries. 

The integration of multimodal data was a notable trend 

identified in this review, with 58 articles demonstrating 

its impact on improving defect detection rates by 22% 

on average. This finding supports earlier studies, such as 

Herzog et al. (2024), which emphasized the robustness 

of AI models that combine diverse data streams like 

thermal, acoustic, and optical signals. Previous works by 

Au et al., (2014) suggested that multimodal data fusion 

could address the limitations of single-source data 

methods, a conclusion now substantiated by the 

significant citation count of studies reviewed in this 

research. However, this review also identifies gaps in 

the standardization of multimodal approaches, an area 

that earlier studies like Aminzadeh and Kurfess (2015) 

had recommended for further exploration. The findings 

thus highlight not only the promise of multimodal data 

integration but also the persistent challenges in 

operationalizing these techniques across diverse 

manufacturing environments. 

Dataset scarcity and annotation challenges emerged as 

significant barriers to AI-driven defect detection in AM, 

consistent with earlier studies. The lack of standardized 

datasets across different AM technologies, discussed in 

29 articles, echoes the concerns raised by Herzog et al. 

(2024) and Wang et al. (2014). These earlier works 

noted that the absence of comprehensive datasets limits 

AI models’ ability to generalize across applications, a 
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limitation further reinforced by this review. Annotation 

challenges, such as inconsistencies in labeling high-

resolution images and 3D scans, were reported in 22 

studies, supporting findings by Au et al. (2014), who 

identified manual annotation as a bottleneck in AI 

implementation. While this review highlights the 

growing use of data augmentation techniques, such as 

GANs, to generate synthetic datasets, it also underscores 

the need for standardized annotation processes, a gap 

that remains unaddressed despite being emphasized in 

prior literature. The comparative analysis of AI 

techniques provided insights into their relative strengths 

and limitations, complementing earlier findings. CNNs 

demonstrated superior performance for image-based 

defect detection tasks, achieving an average accuracy of 

93% across 34 studies, consistent with earlier research 

by (Jiang et al., 2015). Conversely, ML techniques like 

SVMs and Random Forests were noted for their 

computational efficiency but had limited effectiveness 

in unstructured data environments, aligning with 

observations by Zawadzki et al. (2018). This review also 

validated prior studies, such as those by Bian et al. 

(2018), which found that hybrid models combining ML 

and DL achieved an 18% improvement in defect 

detection accuracy compared to standalone models. The 

findings reinforce the importance of tailoring AI 

techniques to specific AM applications, an approach 

previously advocated by Herzog et al. (2024).  

 CONCLUSION 

The findings of this systematic review highlight the 

transformative role of Artificial Intelligence (AI) in 

enhancing defect detection within Additive 

Manufacturing (AM) processes, with significant 

implications for high-stakes industries such as 

renewable energy and biomedical engineering. AI 

techniques, particularly machine learning (ML) and 

deep learning (DL), have demonstrated their ability to 

address key challenges such as porosity, delamination, 

and dimensional inaccuracies, with hybrid models 

further enhancing detection capabilities. The 

widespread adoption of Convolutional Neural Networks 

(CNNs) and the integration of multimodal data sources, 

including thermal imaging and acoustic emissions, have 

proven effective in improving defect detection rates and 

ensuring process consistency. However, barriers such as 

dataset scarcity and annotation challenges remain 

critical obstacles, underscoring the need for 

standardized datasets and efficient labeling processes. 

Comparative analyses of AI techniques reveal the 

importance of tailoring approaches to specific 

applications, with hybrid models combining the 

efficiency of ML and the analytical depth of DL 

emerging as particularly effective. These insights not 

only validate the findings of earlier studies but also 

extend the understanding of AI’s potential in optimizing 

AM quality assurance, emphasizing its role as a pivotal 

tool in advancing manufacturing precision, reliability, 

and efficiency. 
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